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Adiabatic Invariants

• Answers and detailed solutions to all problems are provided in iOS/Android "PhysOlymp" app

• With any suggestions please write to feedback@physolymp.com

A special approach is required for systems with cyclic be-
havior and slowly changing parameters. If during one full
period of time changes of the specific characteristics of the
cyclic system are very small, it is usually possible to derive
a correlation between variable parameters, which narrows
down to some constant called "adiabatic invariant". General
tips for solving this particular type of physics problem are
not much different from any other type of problems, such
as making several snapshots of the system at different peri-
ods of time, looking at the small changes of parameters with
neglecting the smallest components in equations and finally
combining several of them. More specific recommendation
is thorough examination of the system during one full cy-
cle at some arbitrary moment of time and look for small
changes in length, momentum or something else and try to
correlate those small changes with other changes occurred
during that time. Also many problems can be solved with
using energy conservation law, by examining average losses
and gains in energy during one full cycle

Example 1

A small body is moving along flat frictionless horizon-
tal surface, bouncing between two massive vertical
walls. One of the walls is also moving but with a ve-
locity, which is much less than of the ball at any time.
Find velocity of the ball v f at the moment when dis-
tance between the walls will reduce by 20%. Assume
that collisions with the walls are perfectly elastic, ini-
tial velocity of the ball is v0

Let’s look at the system at some arbitrary moment
of time, when velocity of the body is v and distance
between two walls is x

During collisions with a moving obstacle, the velocity
of the ball is slightly changing by ∆v, while during
impact with a stationary wall, it only changes direc-
tion, but not magnitude of the velocity. If the wall is
moving with some constant velocity u, then in the ref-
erence frame of the moving wall, the ball approaches
it with a velocity (v + u) and bounces back in mirror
like manner

Then velocity of the ball after collision with the mov-
ing wall in laboratory reference system will be

v +∆v = (v + u) + u

Or
∆v = 2u

During one full period of time T , distance between
the walls reduces by

∆x = −uT
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where negative sign indicates that distance is reduc-
ing with time
As v� u

T ≈
2x
v

Combining the last three equations results in follow-
ing relation between changing parameters

∆x = −
∆v
2
·

2x
v

Integrating both parts of the equation

∫

d x
x
= −

∫

dv
v

ln x = − ln v + const

Or
x v = const

Such kind of correlations with a slowly changing
parameters is adiabatic invariant

Substituting initial and final conditions of the
system into correlation:

Lv0 = 0.8Lv f

v f = 1.25v0

Problem 1

Two small balls are bouncing between vertical walls
and heavy brick as shown at the picture below. The
brick can move along flat horizontal surface without
friction, all collisions of the balls are perfectly elastic.
At initial condition the brick is at rest with a distance
L to both of the walls, while balls are moving with ve-
locities v0. Find period of oscillations of the brick T ,
when it is moved sideways at a small distance from
a symmetrical initial state. Assume that T is much
larger than time between any two collisions of the
balls. Mass of the brick M is much larger than mass
of the balls m

Problem 2

A small rigid disc is moving without friction along
flat horizontal surface limited within a space in form
of isosceles triangle with a small angle ϕ � 1. Base
of the structure is moving very slowly with external
force. All collisions of the puck with vertical walls of
the triangle and its base are perfectly elastic, and all
the walls are very heavy and smooth. At initial con-
ditions the disc collides with the base of triangle at
angle α0. What will be incident angle α f when di-
mensions of the triangle will increase in two times?
Assume that puck is so small that it does not get stuck
at the vertexes of the triangle and it is always in a sta-
ble vertical position (does not topple over)

Problem 3

A small bob is attached to the non-stretchable
weightless thread, which is winding around a very
thin vertical pole. Initial length of the thread in the
air is L0, and initial angle with vertical α0 = π/6.
Motion of the bob around the pole is close to circular
with very slow changes in time for angle and length
of the free thread. Assuming that thread is no sliding
along the pole, find length L f of the thread in the air
when it has angle α f = π/3

Problem 4

A small bead, which is attached to the weightless thin
elastic band is moving without friction at the flat hor-
izontal surface, wrapping around stationary cylinder.
Assume that equilibrium length of the band is negligi-
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bly small and cylinder is sticky, so that after touching
surface of the cylinder, elastic band is not slipping.
Find velocity of the bead u when the length of the
band is reduced by half from initial conditions, when
velocity of the bead is v0. Also assume that, length
of the free part of the elastic band is much larger
than radius of the cylinder and initial trajectory of
the bead is close to the circular

Problem 5

A small charged particle is moving in slowly chang-
ing magnetic field. Initial radius of the trajectory is
r0. Find radius of trajectory of the particle R when
magnetic field will double

Example 2

A simple pendulum is oscillating in gravity field,
while its length is decreasing very slowly by pulling
the rope through the hole in the ceiling. What will
be amplitude of the small oscillations A f when the
length of the thread will be reduced by half? Initial
amplitude of the bob is A0

If length of the rope at some moment of time is r,
then tension force of the thread as a function of de-
viation angle α should be

T = mg cosα+
mv2

r

’ where m is mass of the bob and v - its velocity

As length of the rope is reducing very slowly, during
any one full cycle, motion can be described as of a
simple pendulum with frequency of oscillations

ω2 =
g
r

Hence angle α and velocity of harmonic oscillations
v can be described as

α= αA sin
�

ωt +ϕ
�

v = rα̇= rαAω cos
�

ωt +ϕ
�

where αA is maximum deviation angle during one cy-
cle, ϕ is a phase shift, which is related to the refer-
ence point of the measured time t
For small angles

α� 1 cosα≈ 1−
α2

2

Substituting everything into equation with tensition
force

T ≈ mg

�

1−
α2

2

�

+mα̇2r

= mg

�

1−
α2

A sin2(ωt +ϕ)

2

�

+mα2
Aω

2r cos2(ωt +ϕ)

To pull the rope during one cycle, external force
should do a work

∆W = −〈T 〉∆r

where 〈T 〉 is average tension force during one cycle,
∆r - is reduction in pendulum length during that
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time. Negative sign indicates that for reduction of
length (∆r < 0) should be done a positive amount
of work

〈T 〉= mg∆r −
mgα2

A

2




sin2(ωt +ϕ)
�

∆r

+mα2
Aω

2r



cos2(ωt +ϕ)
�

(1)

Averages of trigonometric fuctions for one full period
of time are

sin2(ωt +ϕ) =

�

1− cos2(ωt +ϕ)
2

�

=
1
2
− 0=

1
2

cos2(ωt +ϕ) =

�

1+ cos2(ωt +ϕ)
2

�

=
1
2
+ 0=

1
2

Combining last few equations, amount of work done
by pulling the rope during one period is

∆W = −mg

�

1+
α2

A

4

�

∆r (2)

That work is tranformed into in-
creasing potential energy of the bob

∆Ep = mg(r −∆r) cos
�

αA+∆αA

�

−mgr cosαA

= mg∆(r cosαA)

= −mg∆r cosαA+mgr sinαA∆αA

for

small angles

∆Ep ≈ −mg∆r

�

1−
α2

A

2

�

+mgrαA∆αA (3)

From conservation of energy

∆W =∆Ep

Using equation (2) and (3)

3
4

mgα2
A∆r +mgrαA∆αA = 0

Rearranging

3
4

∫

∆r
r
+

∫

∆αA

αA
= 0

3
4

ln r + lnα= const

r3/4αA = const

Using definition of amplitude A= αAr results in fol-
lowing adiabatic invariant

A4

r
= const

Then amplitude of the small oscillations after reduc-
tion of the length of the pendulum by half is

A f =
A0
4p2

Problem 6

Two weights with identical masses are attached to
the weightless string which goes through two pulleys
with negligible masses. At initial moment of time a
body from the right is pulled sideways by a small dis-
tance A0, which is much less than length of the string
l. Find velocity of the left body v at the moment
when it will rise up by a distance l/2

Problem 7

A circuit with a capacitor and inductance coil has ini-
tial energy of the system E0. Parallel plates of the
capacitor are very slowly moved apart . What will
be energy in the system E f when distance between
plates of the capacitor will double?
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Alternative, more straightforward derivations for adiabatic
invariants of the mechanical systems is using the fact that

I =
∮

p(x)d x = const

where p(x) is momentum of the system as a function of
coordinate x . Contour integral is usually can be replaced
with a linear one by leveraging symmetry of the phase di-
agram (plot of momentum vs coordinate). For example,
for a ball bouncing between stationary and slowly moving
heavy walls, velocity of the ball v as a function of distance
between the walls xA can be found by examining its phase
diagram

From symmetry of the back and forth movements, contour
integral is equivalent to

I =
∮

p(x)d x = 2

xA
∫

0

mvd x

as there is no external forces applied at the ball, its velocity
does not dependent of coordinate x). Then

I = 2mv

xA
∫

0

d x = 2mvxA

or was obtained the same result, with one derived earlier
by using incremental velocity during collision with a mov-
ing wall

vxA = const

For cyclic oscillatory systems, but with slowly changing pa-
rameters, momentum can be a function of coordinate as

Then contour integral can also be evaluated from symmetry
of the phase diagram as

I =
∮

p(x)d x = 4

xA
∫

0

p(x)d x = const

where xA is amplitude of oscillations during one cycle

Example 3

A simple pendulum is oscillating in gravity field,
while its length is decreasing very slowly by pulling
the rope through the hole in the ceiling. What will
be amplitude of the small oscillations A f when the
length of the thread will reduce by a half? Initial
amplitude of the bob is A0

Alternative solution to this problem, which is a more
straightforward and shorter is by using definition of
adiabatic invariant for mechanical system:

I =
∮

p(x)d x = const (1)

As parameters of the system are changing very
slowly, then it can be assumed that energy during one
full period of oscillations is conserved. If measuring
potential energy of the bob in gravity field from the
ceiling, then

−mgr cosαA =
p2

2m
−mgr cosα

Thus, momentum of the bob as a function of coordi-
nate is

p(α) = m
p

gr
q

α2
A−α2 (2)

where αA is angular amplitude of the oscillations at
that particular period of time when length of the rope
is r. For small oscillations α� 1

sinα≈ α=
x
r
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Using symmetry of the phase diagram,
contour integral (1) can be calculated as

I = 4

αA
∫

0

m
p

gr
q

α2
A−α2 · rdα

= 4m
p

gα2
Ar
p

r

1
∫

0

√

√

√

1−
α2

α2
A

d

�

α

αA

�

If α/αA = z, then

1
∫

0

p

1− z2dz = C = const

so there is no need to evaluate actual integral, no
matter how complicated it is, the only answer re-
quired is that integral will result in some constant
number C . Thus

I = 4m
p

gCα2
Ar3/2 = const

or it is the same result as one obtained by averaging
energy changes during one cycle

r3α4
A = const

A f =
A0
4p2

Problem 8

A small metallic ball is attached to the spring and the
system can oscillate along a flat frictionless horizon-
tal surface with initial amplitude of oscillations A0.
Metallic ball is coated with a layer of ice, which is
melting very slowly. What will be amplitude of har-
monic oscillations of the bob A f when total mass of
the bob (mass of metallic ball and ice) will reduce by
a half?

Problem 9

A small charged ball moves along a flat frictionless
surface between two insulating walls A and B. The
wall A is fixed, while heavy wall B is moving very
slowly to the wall A. Initial distance between walls is
L, while kinetic energy of the ball near A is WA. There
is an external constant electric field E applied be-
tween two walls. Assume that all collisions are per-
fectly elastic, charge of the ball q is constant. What
will be distance between the walls l at the moment
when kinetic energy of the ball near stationary bar-
rier will increase in four times?


