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Polar coordinate system

• Answers and detailed solutions to all problems are provided in iOS/Android "PhysOlymp" app

• With any suggestions please write to feedback@physolymp.com

Selection of fit for purpose coordinate system can significantly
simplify solution of the problem. For the cases when trajectory
of the particle is close to circular or spiral like contour in a plane,
it is usually convenient to use polar coordinates

Polar coordinate system is characterized by a distance r from the
reference point O and angle ϕ from some reference direction
(Ox)

Location of some specific point A in Cartesian system in terms of
known polar coordinates can be expressed as

xA = r cosϕ

yA = r sinϕ

Components of velocity ~v in Cartesian coordinates are described
with two unit vectors ~i and ~j, which are parallel to x and y axises
respectively, with a direction alongside of increasing values of co-
ordinates x and y

~vx =
d x
d t
~i

~vy =
d y
d t
~j

Total velocity in Cartesian coordinate system is a vector sum of
its components:

~v = ~vx + ~vy =
d x
d t
~i +

d y
d t
~j

Similarly, directions in polar coordinate system are characterized
with two unit vectors: one with a normal ~n outward direction
and another one perpendicular to vector ~n with a counterclock-
wise direction ~τ

By definition of velocity, it is a displacement in unit of time. Let’s
consider a motion in plane from the point A to the position A′
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Normal component of velocity vn can be defined as displacement
∆r from the origin of coordinates in a small time interval ∆t

vn =
∆r
∆t

With accounting to direction described by unit vector ~n this can
be rewritten as

~vn =
∆r
∆t
~n=

dr
d t
~n= ṙ~n (1)

Similarly tangential component of velocity can be defined as dis-
placement r∆ϕ obtained by rotating at small angle ∆ϕ during
time interval ∆t

vτ =
r∆ϕ
∆t

Direction of tangential component of velocity coincides with unit
vector τ. Then,

~vτ =
r∆ϕ
∆t

~τ= r
dϕ
d t
~τ= rϕ̇ ~τ (2)

Equations (1) and (2) can be easily comprehended by consider-
ing limiting cases, with trajectory of the moving particle being
either a straight line or a circle

For a motion along a straight line equation (1) becomes a regular
definition of velocity as a measure of change of coordinate r per
unit of time

vn =
dr
d t
= ṙ

For another limiting case of the motion around a fixed center
with constant radius r, velocity of the object can be defined by
its angular velocity ω= ϕ̇ as

vτ =ωr = ϕ̇r

which corresponds to a general form of tangential component of
velocity in polar coordinate system given by equation (2)

Example 1

A moth flies towards the lamp with constant velocity,
which always has some angleαwith radial direction. How
many turns N will make the moth before hitting the lamp?
Initial distance between the moth and the lamp is L, ra-
dius of the lamp is R

Spiral like trajectories are more convenient to describe by
using polar coordinates. If the moth is moving with veloc-
ity v, then its components of velocity in the normal and
tangential directions of the polar coordinate system can
be defined as

dr
d t
= −v cosα

r
dϕ
d t
= v sinα

Dividing those equations gives

dr
rdϕ

= −
1

tanα

Separating terms allow to perform a trivial integration

R
∫

L

dr
r
= −

1
tanα

2πN
∫

0

dϕ

Finally,

N =

�

tanα ln
�

L
R

�

�

where was taken into account that number of revolutions
is integer number

Remark: a trajectory with a constant angle at the
tangent is called logarithmic spiral. It frequently ap-
pears in nature, such as for the shape of nautilus shell,
extratropical cyclone, or the arms of spiral galaxies
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Problem 1

A small bead can move along a fixed rigid wire, which has
a shape defined in polar coordinate system as

r = R| cosϕ|

where R= 1.0 m, ϕ is angle counted from initial position
in the point A as shown at the picture

Estimate angular velocity ω of the bead, after t = 0.1 s, if
its initial velocity is v0 = 1.0 m/s. Friction, gravity or any
other external forces can be neglected. Angular velocity
is defined as

ω= ϕ̇ =
dϕ
d t

Acceleration in polar coordinate system
Derivations for normal and tangential components of the accel-
eration in polar coordinates are a little bit more tricky. Let’s start
from the definition of acceleration a as a change of velocity ∆v
per time interval ∆t

a =
∆v
∆t

As acceleration and velocity are vectors, then components of ac-
celeration along normal and tangential direction can be described
as

~an =
d~vn

d t
; ~aτ =

d~vτ
d t

Using derived earlier equations of components of velocity in polar
coordinate system, and chain rule for taking derivatives results in
following

~an =
d~vn

d t
=

d
d t

�

dr
d t

�

· ~n+
dr
d t
·

d~n
d t

(1)

~aτ =
d~vτ
d t
=

d
d t

�

r
dϕ
d t

�

· ~τ+ r
dϕ
d t
·

d ~τ
d t

(2)

After displacement from initial position A to the point A′, abso-
lute magnitude of unit vectors |~n| =

�

� ~n′
�

� = 1 and |~τ| =
�

� ~τ′
�

� = 1
is constant, but they change direction from ~n to ~n′ and from ~τ to
~τ′ as shown at the picture below

Rate of change d~n/d t and d ~τ/d t can be estimated by examining
small isosceles triangles formed by pairs of vectors ~τ and ~τ′ as
well as ~n and ~n′:

From isosceles triangle can be obtained

d~n
d t
=
∆n
d t
· ~τ=

2 sin
∆ϕ

2
|~n|

d t
· ~τ

For a small angle ∆ϕ� 1 can be used approximation

sin
∆ϕ

2
≈
∆ϕ

2

Then,

d~n
d t
=
∆ϕ

d t
· ~τ=

dϕ
d t
· ~τ (3)

Similar for tangential unit vector

d ~τ
d t
= −
∆τ

d t
· ~n= −

2 sin
∆ϕ

2
|~τ|

d t
· ~n= −

dϕ
d t
· ~n (4)

Negative sign is accounting for inward direction, which is oppo-
site to the direction of unit vector ~n

Expanding terms in equations (1) and (2) with using expres-
sions (3) and (4) yields

~an = r̈~n+ ṙ
dϕ
d t
~τ

~aτ = ṙ
dϕ
d t
~τ+ rϕ̈ ~τ− r

dϕ
d t
·

dϕ
d t
~n

Combining both equations results in

~a = ~an + ~aτ = (r̈ − rϕ̇2)~n+ (rϕ̈ + 2ṙϕ̇)~τ

Or
�

�an

�

�= r̈ − rϕ̇2

which is equivalent to the effective acceleration for the case,
when moving with inertial rotating frame. In that frame a parti-
cle will move along a straight line in the radial direction, so its
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acceleration r̈ should be just corrected for centrifugal accelera-
tion rϕ̇2

Similarly for a tangential component

�

�aτ
�

�= rϕ̈ + 2ṙϕ̇ =
1
r

d(r2ϕ̇)
d t

In case of central forces

�

�aτ
�

�=
Fτ
m
= 0

which corresponds to

r2ϕ̇ = const

This is a regular expression for conservation of angular momen-
tum, in centrally symmetrical fields

Example 2

A satellite is moving around the Earth at a circular orbit
with radius R. After collisions with small debris the satel-
lite starts oscillating in the radial direction. Find period of
those small oscillations T of the satellite, assuming that its
trajectory is still close to circular

Let’s describe motion of the satellite, when it is at the dis-
tance r from the center of the Earth

As trajectory of the body is close to circular, we can try to
work with polar coordinate system. Using result of deriva-
tion for normal component of acceleration in polar coordi-
nate system, Newton’s law for the satellite can be written
in radial direction as

m(r̈ − ϕ̇2r) = −
GMm

r2
(1)

Negative sign in the right side of the equation accounts
for the fact that gravity force is attractive, with direction
to the center of the Earth, which is opposite to the regu-
lar notations of polar coordinate system. As there is no
tangential forces applied, then angular momentum of the
satellite is conserved:

r2ϕ̇ = const = v0R (2)

where v0 is initial velocity of the satellite, when it was ro-
tating at the circular orbit with radius R. Balance of forces

for circular motion can be described as

mv2
0

R
=

GMm
R2

(3)

After combining all equations together we will get follow-
ing relation

r̈ −
GMR

r3
+

GMm
r2

= 0 (4)

if r = R+ x , where x � R, then equation (4) can be mod-
ified as

ẍ −
GM

R2

�

1+
x
R

�3 +
GMm

R2

�

1+
x
R

�2 = 0 (5)

For small parameter z� 1 can be used approximation

(1+ z)n ≈ 1+ nz

So, equations (5) can be simplified to

ẍ −
GM
R2

�

1− 3
x
R

�

+
GMm

R2

�

1− 2
x
R

�

= 0

Or,
ẍ +

GM
R3

x = 0

This is a classical equation for a simple harmonic oscillator
with a period of oscillations

T = 2π

√

√ R3

GM

Problem 2

A beam of electrons is emitted at the point A, which is
located between the plates of the long cylindrical capac-
itor. Electrons are emitted not at the same direction, but
rather have some small spread angle at the injection point,
which is causing the beam to expand. However, due to
electric field from the capacitor the beam focuses again
at some point characterized with angle θ as shown at the
picture. Find angle θ , if known that electric field between
the plates of the capacitor is radially symmetrical and pro-
portional to inverse of the distance from the axis of sym-
metry
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Problem 3

Two small objects with masses m1 = 0.1 kg and m2 =
0.2 kg are tied with a lightweight, inextensible rope of
the length L = 1.0 m. Initially, the weight with a mass m1
is moving around a circular trajectory with radius L/2 at
the flat frictionless table. The second body is suspended
on the rope, which goes through a small hole in the table.
Find period of small oscillations T of the second body in
the vertical direction. For calculations use g = 9.8 m/s2

Problem 4

A coupling can move along the vertical axis OA without
friction. One end of the weightless rigid rod with a length
L = 1.0 m is fastened to the joint A, while to the other
end of the rod is attached a heavy ball of a small size,
which can move on the flat smooth surface. Initially, the
system is at rest and the ball is pushed in such a way, that
it has initial velocity v0 = 1.0 m/s in the direction along
horizontal surface and perpendicular to the rod. Find ac-
celeration of the coupling a0 in the beginning of motion of
this system. For calculations assume that mass of the ball
is equal to mass of the coupling; initial angle between the
rod and the vertical axis is α0 = 60◦, while acceleration
due to gravity is g = 9.8 m/s2

Problem 5

A small object is attached to the weightless non-
stretchable string, which can wrap around a smooth cylin-
der with radius R = 1.0 m. Initially, a linear piece of
the string is horizontal with a length L = πR, while
the bob is pushed with velocity v0 in the vertical direc-
tion. Find value of v0, if known that tension force of the
string became zero after wrapping on the cylinder by an-
gle α= 60◦. For calculations use gravity g = 9.8 m/s2

Problem 6

A small particle with a mass m and charge +Q is passing
by a fixed dipole with charges ±q separated by tiny inter-
val a. Find minimal distance rm between the dipole and
moving particle, if its impact parameter is b = 1 · 10−3m,
(b� a).

Assume that friction, gravity or any other forces except in-
teraction between the charged particle and dipole can be
neglected. For numerical calculations use dimensionless
parameter γ:

γ=
kQqa

mv2
∞b2

=
1
3

where v∞ is initial velocity of the particle at the large
distance from the dipole

Hint:

Normal En and tangential Eτ components of the electrical
field of the dipole can be described as

En =
2kqa cosθ

r3

Eτ =
kqa sinθ

r3

where r is distance from the dipole and θ is angle as
shown at the picture above. Potential ϕ from the dipole
electrical field is

ϕ = −
kqa cosθ

r2


